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ABSTRACT
India’s power sector is dominated by thermal power generation, with half 
of all installed electricity capacity coming from coal. This makes it highly 
exposed to water risk as thermal power is dependent on the uninterrupted 
availability of freshwater for a range of operational needs. Disruptions in 
power supply due to droughts have compounding effects across a range of 
users from industry to agriculture to human health.   

In areas with high water stress, having access to timely information on fore-
casted water availability could help decision-makers avoid the risk of acute 
water-driven power outages and advocate for long-term, water-prudent 
policies and management. We introduce a daily forecast of reservoir water 
volumes for the coming 90 days using a deep learning framework called 
the Bayesian long short-term memory sequence-to-sequence-to-sequence 
model. We show that it is possible to create a high-quality, timely reservoir 
forecast using global meteorological data. On average, the 11 pilot reservoirs 
in this study achieved a coefficient of determination score of 92 percent for 
a short-term (1–14 day) forecast, and 56 percent for the long-term (15–90 
day) forecast. Our approach, which does not rely on specific reservoir 
operations management data, can still provide a time- and cost-efficient 
solution compared with traditional hydrologic models, and can serve a 
variety of applications, including power production, food security, urban 
water supply, and resilience building. The forecast can be used to flag when 
drought-like conditions threaten water supply, but it should not be used 
to monitor human interventions or as a tool to inform reservoir manage-
ment operations.
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1 INTRODUCTION
By mid-2023, India is expected to have the largest population 
in the world (AP News 2023). At the same time, it is one of 
the globe’s most water-stressed countries (Hofste et al. 2019a). 
India is home to 18 percent of the Earth’s population, but only 
4 percent of its freshwater (India-WRIS 2021). As India’s 
population and economy continue to grow, so will the com-
petition over its limited water resources. India’s water stress 
is intensified by severe droughts, which amplify the strain 
on water supply. Droughts reduced India’s gross domestic 
product by an estimated 2–5 percent between 1998 and 2017 
(UNDRR 2021). By the end of the century, flash droughts—
characterized by the rapid depletion of soil moisture—are 
projected to increase sevenfold due to climate change (Mishra 
et al. 2021a). 

The increasing demand for its water resources, coupled with 
changes in supply patterns caused by climate change, pose 
serious implications for the future health and well-being 
of India’s economy and people. One often overlooked con-
sequence of drought is the risk of power outages due to 
insufficient water supply. While the energy sector accounts for 
only about 3 percent1 of India’s water withdrawals (compared 
with at least 80 percent for agriculture) (de Oliveira Bredariol 
et al. 2021; FAO 2020), it is still susceptible to cut-offs when 
water availability is low. Water is a necessary resource for 
thermal energy production, from cooling equipment to clean-
ing ash. India’s current power mix and generation is largely 
comprised of thermal power—coal represents 50 percent of 
installed capacity as shown in Figure 1—and is highly vulner-
able to water scarcity, droughts, and climate change (CEA 
2022). Enormous volumes of India’s thermoelectric-heavy 
power production—up to 14 terawatt-hours of electricity 
generation during the 2016 drought, enough energy to power 
Sri Lanka for a year—are lost due to insufficient water to cool 
power plants (Luo et al. 2018). These shutdowns are costly, 
too, losing around $1.4 billion in potential revenue from 
sales from 2013 to 2016 (Luo et al. 2018). Further, water-
intensive power plants also siphon water away from essential 
food production, and the daily needs of cities, businesses, 
and households. 

India has set a nationally determined contribution target of 50 
percent non-fossil fuel–based electric power installed capacity 
by 2030 to curb greenhouse gas emissions (PIB Delhi 2022). 
It is imperative that this effort be paired with water-saving 
policies—such as retrofitting older plants with new cooling 
methods like dry cooling, or decommissioning water-intensive 
plants. One study found India’s water withdrawals for electric-
ity could grow ninefold by 2050 from a 2010 baseline if no 
changes to the power mix or water usage are made (Srinivasan 

et al. 2018). This same study found that water withdrawals 
could also increase under a low-carbon scenario if water-
intensive technologies like nuclear are prioritized (Srinivasan 
et al. 2018). In such a scenario, the power sector would 
continue to be constrained by water availability.  

Having access to current and forecasted water availability in 
reservoirs that supply the power sector with water could help 
illuminate the chronic issues around India’s dependance on 
water for power and avoid acute instances of power outages 
due to insufficient cooling water supply. Trusted and open-
source water risk information—especially if rooted in the 
government’s own data—can help drive continued on-the-
ground, evidence-driven decision-making related to future 
energy development and operation of existing power plants in 
water-stressed scenarios, as well as advance the social right to 
water in a highly competitive water use landscape.

World Resources Institute (WRI) and its partner Vasudha 
Foundation present Water4Power (www.water4power.
wri-india.org), an initiative designed to create decision-ready 
information on the water-energy nexus (WRI India 2020). 
Our pilot project provides open access to near-real-time alerts 
of potential water shortages for 11 reservoirs in India, all of 

Figure 1  |  Installed electric capacity mix in India as of 
September 2022  

Notes: Water-prudent power sources include wind, solar, biomass, and waste-to-
energy. Water-intensive power sources include hydro and nuclear.

Source: Data from CEA 2022.
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which source water for thermal coal power generation. The 
pilot reservoirs serve roughly 20 percent2 of India’s installed 
electric capacity from coal and include a broad range of facili-
ties in terms of location and size. In addition, some but not all 
the pilot reservoirs have faced cut-offs due to water stress. For 
example, the Seoni thermal power plant, which receives water 
from the Bargi reservoir, was shut down for 32 days in the 
summer of 2017 due to raw water unavailability (VPIH 2023). 
The diverse mix of pilot reservoirs will help decision-makers 
weigh multiple factors as they begin to prioritize policies 
ranging from upgrading water-saving cooling technologies to 
decommissioning plants.

WRI found another research partner, H2Ox, through a 
hackathon designed to solicit innovative solutions to forecast-
ing reservoir water levels (see Box 1). Together, we introduce 
a cutting-edge approach to forecast daily changes in reservoir 
water availability for up to 90 days using a Bayesian long 
short-term memory (BLSTM) neural network. 

2 METHODOLOGY
2.1 Baseline model
As part of the Water4Power Initiative, we set out to develop 
an adaptable model that could produce daily forecasts of 
reservoir water volumes for the coming 90 days. We wanted 
to create a nonprescriptive model that could be applied to 
different locations and contexts, and that was more time- and 
cost-efficient to run than traditional hydrologic models. We 
call this the baseline model as it has the fundamental elements 
needed to create the forecast. Through the baseline model, 
we show that it is possible to generate high-quality, reliable, 
near-real-time reservoir forecasts using mainly meteorological 
data derived from open-source satellite products. We inten-
tionally kept the method generalized—meaning we avoided 
using local datasets and limited the number of inputs—so 
that it can easily be adapted to regions outside of our pilot 
study area. Just as importantly, we also selected data that could 
support the near-real-time production of the forecast. As we 
describe in “Data services,” the baseline model can be custom-
ized with site-specific and other types of information such as 
local weather data. 

As a result, our model does not explicitly include reservoir 
operations—human interventions that significantly impact 
the amount of water available in a reservoir. Rather, the 
model infers patterns among water availability, upstream and 
downstream reservoir flows, and climate-related indicators to 
create its forecast. Therefore, the baseline model can be used 
as a tool to alert stakeholders when drought-like conditions 
threaten water supply; it cannot be used to alert or inform 
stakeholders about upcoming reservoir operations that might 
impact supply. 

Overview
The objective of the baseline model is to create a transpar-
ent, timely forecast of daily water volumes for the coming 90 
days to alert stakeholders of potential water shortages before 
they happen. Our pilot focuses on 11 reservoirs in India, all 
of which source water for thermal coal power generation. 
We used a BLSTM sequence-to-sequence-to-sequence 
(seq2seq2seq) deep learning model with a graph convolu-
tional layer to produce the 90-day forecast. Specifically, the 
model forecasts the net change in water volume from the 
previous day, which can be converted back to volumes in post-
processing. We created a unique model for the six major river 
basin networks featured in our pilot. A reservoir’s forecast 
was created by running its basin’s model with reservoir-
specific daily inputs. 

Box 1  |  A hackathon success story 

In 2021, WRI, Microsoft, and BlackRock hosted the Wave2Web 
Hackathon.a We invited teams of students, professionals, and 
start-ups from all over the world to develop a machine learn-
ing–based model to forecast water levels for the reservoirs 
supplying the city of Bengaluru with drinking water. Out of the 
26 teams that submitted proposals, H2Ox, coauthors on this 
paper, won the hackathon with their sophisticated model and 
dashboard (https://www.h2ox.org/).b Following the hack-
athon, WRI and H2Ox shared a vision to bring their winning 
sequence-to-sequence long short-term memory (LSTM) model 
into production. Our work has culminated with the launch of 
the Water4Power dashboard, presented in this paper. We have 
also released a research paper that evaluates the impact of the 
various model structures on performance.c In that paper, the 
research covers 66 reservoirs in India (including the original 
reservoirs from the hackathon) and serves as a companion 
piece to this technical note for those interested in machine 
learning science.

Sources:

a: WRI India 2021.

b: Kruitwagen et al. 2021, 2.

c: Kruitwagen et al. 2022b.
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Modeling extent
While our pilot study focuses on only 11 reservoirs, we 
acknowledge that these reservoirs do not exist in a vacuum. 
The management of upstream and downstream reservoirs 
will likely impact water availability. Therefore, we included 
reservoirs3 adjacent to the 11 pilot reservoirs as model inputs 
via a graph convolutional layer (called an adjacency matrix) 
to capture interbasin interactions—specifically inflows and 
outflows that impact the main pilot reservoirs. In total, 38 
reservoirs were involved in our modeling extent (11 pilot 
reservoirs and 27 auxiliary reservoirs, as illustrated in Figure 2) 
mapping across six major river basins. 

Data sources
India’s governmental Central Water Commission (CWC) 
publishes near-real-time data on reservoir water levels and 
volumes via the India Water Resources Information System 
(India-WRIS 2008). We selected CWC’s reservoir water 
availability data because the data are published on an open-
source platform and the CWC has a minimum 10-year record 

of daily data (the longer the record, the more instances of dry 
spells our model can learn from). CWC data have the added 
benefit of being an official government dataset, which can help 
with local acceptance and application of the research. 

Precipitation and temperature were identified as strong pre-
dictors of future reservoir water levels during the hackathon. 
While there are many potential sources of this information, 
our research required data to be open source and readily 
accessible (via an application programming interface [API] or 
similar functionality), with a 10-year-record minimum, and of 
consistent quality throughout India. The accessibility element 
ruled out most local weather datasets for the baseline model. 
We identified two sources that met our criteria: the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
and the Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS). Both provide near-real-time, globally 
available historic meteorological data. ECMWF has the added 
benefit of also providing weather predictions for 14 days. 

Figure 2  |   Locations of the 11 pilot Water4Power reservoirs 

Notes: Reservoirs are grouped by their basin network, named at the top of each box. In addition, we show neighboring reservoirs within each network that fed inflows and outflows 
to the pilot reservoirs via an adjacency matrix.

Source: Authors. Data used: Reservoir locations (Lehner et al. 2011); HydroBASINS catchments (Lehner and Grill 2014).
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Within the ECMWF family, there were two datasets of 
interest: the ECMWF ReAnalysis Version 5 Land (ERA5-
Land) (Muñoz Sabater 2019), and THORPEX Interactive 
Grand Global Ensemble (TIGGE) (Swinbank et al. 2016). 
ERA5-Land provides high-resolution (0.5 degree, hourly 
time step), cloud-optimized total precipitation and two-meter 
surface air temperature, but with a two-to-three month lag in 
data delivery at the time of the research.4 TIGGE provides 
daily forecasts of total precipitation and two-meter surface air 
temperature for the coming 14 days, also in high resolution 
(0.5 degree, six-hour time step) but with no lag in delivery. 
Therefore, we selected TIGGE for both the ex ante meteo-
rological data and historic temperature data (data from Day 
0 were used to represent historic conditions; all other days 
(1–14) were used to represent forecasted conditions). 

The CHIRPS dataset provides daily total precipitation values 
available with a 0.05-degree resolution (Funk et al. 2015). 
CHIRPS precipitation data are derived from satellite imagery  

and bias corrected using gauge data. Studies show that 
CHIRPS data are comparable to gauge-based precipitation 
estimates in India (Prakash 2019). CHIRPS was selected as 
the source for historic precipitation data because of its high 
resolution (higher than TIGGE), its proven quality in India, 
and its near-real-time availability.

The final input included in the model does not have a source 
because it is date-based. We used a day-of-year variable to 
help the model track seasonality within a year. In India, there 
are four main hydrologic seasons: monsoon ( June-September), 
post-monsoon (October-December), winter ( January-
February), and summer (March-May) (Attri and Tyagi 2010). 
Day-of-year are the only data used to train the model during 
every stage of the BLSTM. A list of all data sources can be 
found in Table 1. 

Table 1  |  List of predictors used to train the LSTM model along with their data sources  

TYPE SOURCE (CITATION) SPATIAL 
RESOLUTION

TEMPORAL 
RESOLUTION

UPDATED DATA 
AVAILABILITY

BLSTM STAGE

Stage 1 
(Day 0)

Stage 2 
(Days 1–14)

Stage 3 
(Days 15–90)

Reservoir water 
volumes

CWC (India-WRIS 2008) Reservoir-wise Daily Every 1–7 days X

Historic precipitation CHIRPS (Funk et al. 2015) 0.05 degrees Daily Every 5 days X

Historic two-
meter surface air 
temperature

ECMWF TIGGE (Swinbank et 
al. 2016)

0.5 degrees 6-hour time steps; 
forecasts for up to  
14 days 

Daily X

Forecasted 
precipitation

ECMWF TIGGE (Swinbank et 
al. 2016)

0.5 degrees 6-hour time steps; 
forecasts for up to  
14 days 

Daily X

Forecasted two-
meter surface air 
temperature

ECMWF TIGGE (Swinbank et 
al. 2016)

0.5 degrees 6-hour time steps; 
forecasts for up to  
14 days 

Daily X

Day-of-year N/A Reservoir-wise Daily Daily X X X

Source: BLSTM = Bayesian long short-term memory; CWC = India’s Central Water Commission; CHIRPS = Climate Hazards Group InfraRed Precipitation with Station data; 
ECMWF = European Centre for Medium-Range Weather Forecasts; TIGGE = THORPEX Interactive Grand Global Ensemble; N/A = not applicable. 

Source: Authors.
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Data processing
The BLSTM model required that data be in a standardized 
format to interpret them together; therefore, data inputs 
(historic water volumes, historic and forecasted precipita-
tion and temperature, and day-of-year) were normalized to 
a scale from –1 to 1 and tied to a forecast date and reservoir 
name, as shown in Table 2. Missing data were treated as 
follows: null data with fewer than 15 missing consecutive 
days were imputed using a cubic interpolation approach; data 
with more than 15 missing consecutive days were deemed 
invalid and removed. 

WATER VOLUMES

We first converted the reservoir water volumes into net change 
by subtracting the previous day’s volume; we then z-scored the 
data using the reservoir-wise mean and standard deviation to 
normalize the data to a scale of –1 to 1. 

TEMPERATURE AND PRECIPITATION

The raw meteorological data came in a gridded format and 
therefore needed to be reduced to a reservoir-specific area 
to become an input dataset. To define this area per reser-
voir, we used the HydroBASINS Level 8 nested catchment 
network (Lehner and Grill 2014) to identify catchment 

geometries at and uniquely upstream of each reservoir, as 
this area captures the weather events that directly impact 
water availability. We specify uniquely upstream because the 
flow from adjacent reservoirs is accounted for in the model 
architecture via the graph convolutional layer, and we wanted 
to avoid double-counting adjacent precipitation as an input. 
The process started at the most upstream reservoir within 
each basin, where we merged its upstream catchments into a 
single geometry. The process continued reservoir by reservoir, 
cascading down the basin’s hydrological graph so that every 
catchment flowed into only one reservoir, and every reservoir 
was assigned its unique upstream area. The resulting areas 
were used to reduce the gridded daily meteorological data into 
a mean and standard deviation per reservoir, which were then 
z-scored to a scale of –1 to 1.

DAY-OF-YEAR

The day-of-year input represents the date sequence for each 
day within the 90-day forecast. For example, the data sequence 
for a forecast made on January 1 runs from January 2 to April 
1 (i.e., 90 days from January 1). To create the day-of-year 
variable, we converted the date sequences into day-of-year 
values ( January 1 is 1, December 31 is 366), and applied a 
cosine transformation to normalize it to a scale of –1 to 1 
(see Figure 3).

Table 2  |  Example input data structure for the 90-day forecast  

FORECAST PARAMETERS MODEL INPUTS

Stage Reservoir Date of 
forecast

Step (day from 
forecast)

Water 
volume

Historic 
precipitation

Historic 
temperature

Forecasted 
precipitation

Forecasted 
temperature

Day of year

1 A 2011–01–01 0 0.0018 -0.3325 -0.5419 NaN NaN 0.999852

2 A 2011–01–01 1 N/A N/A N/A -3.722 0.1247 0.99407

… … … … … … … … …

A 2011–01–01 14 N/A N/A N/A 0.2493 0.0211 0.966848

3 A 2011–01–01 15 N/A N/A N/A N/A N/A 0.962309

… … … … … … … … …

A 2011–01–01 90 N/A N/A N/A N/A N/A 0.004304

Source: N/A = not applicable. 

Source: Authors.
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Model Structure
OVERVIEW OF TERMS

We used a BLSTM seq2seq2seq deep learning framework 
with a graphical convolutional layer to produce the daily 
forecast of reservoir water volumes for the coming 90 days. 
The term Bayesian simply refers to the probabilistic nature 
of the model. In short, it allowed us to quantify uncertainty 
(see the “Uncertainty” section). An LSTM (Hochreiter 
and Schmidhuber 1997) is a type of neural network adept 
at handling a long-term sequence like daily reservoir water 
volumes thanks to its use of gates to control the flow of 
information—only data that help the model learn patterns are 
passed on. It enables the model to learn from longer sequences 
without running into decaying error issues (Hochreiter and 
Schmidhuber 1997). Seq2seq2seq refers to a type of LSTM 
that enables a model to take in a sequence of data and return 
an output sequence of a different length—like our 14-day 

forecasted meteorologic input data with our 90-day forecast 
window. Sequence-to-sequence, first published by Sutskever et 
al. (2014) as a language translation tool, has shown strong skill 
in forecasting hydrologic topics such as monsoon spell catego-
ries in India (Viswanath et al. 2019); reservoir inflows (Lee 
and Kim 2021); and surface water runoff (Xiang et al. 2020).

Following Xiang et al. (2020)’s seq2seq structure, we made use 
of encoders and decoders to pass sequences of varying length 
between stages. An encoder maps input data to a fixed-length 
vector called a hidden state, which is then passed to the next 
stage as an input. A decoder translates the hidden state to 
its original format per time step within its stage. We added 
an additional decoder, meaning our model contains three 
sequenced BLSTMs, as shown in Figure 4.

Figure 3  |   Normalized day-of-year input variable  

Notes: An example of the day-of-year input data for a January 1 forecast is shown in blue.

Source: Authors. 
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MODEL ARCHITECTURE 

In Stage 1, the historic encoder, the day-of-year variable, and 
the historic meteorological data were encoded into a hidden 
state variable, which was passed on to Stage 2 along with 
historic water volume (converted into net change).

Next, Stage 2, the forecast decoder, was conditioned using 
the day-of-year variable and the 14-day ex ante meteorologi-
cal data (the forecast window of this stage is limited to the 
14-day lead time of its input data). Upon each time step (day), 
the decoder inherited the hidden state from Stage 1 and 
output an estimated net change in volume, which was then 
appended with the previous day’s value via a linear header 
(i.e., autocorrelative model). Then we applied the reservoir 
adjacency matrix5 via a graphical convolutional layer6 to adjust 
the final output (net inflow/outflow) based on neighboring 
reservoir activity. 

Stage 3, the prediction decoder, was designed to extend the 
prediction horizon to an arbitrary length: in our case, Days 
15–90. It was conditioned on the day-of-year variable and 
inherited the updated hidden state variable from Stage 2. 
Like in Stage 2, the output from Stage 3 is first appended to 
the previous day’s volume and then run through the graphi-
cal convolutional layer before producing the final output 
of net change.  

Once the full forecast is run, the net change values are 
converted back to volumes by de-z-scoring and adding to the 
previous day’s volume. One model is trained for every basin 
network—six in total for the Water4Power pilot. That model 
is then run per pilot reservoir to generate a localized forecast. 

Figure 4  |   Schematic of the BLSTM seq2seq2seq  

Notes: Each stage represents a Bayesian long short-term memory (BLSTM) model. In Stages 1 and 2, input data are encoded into a hidden state variable (h) and passed along to 
the decoder in the next stage. In Stages 2 and 3, the BLSTM outputs are first adjusted by the previous day’s volume and then run through a graph convolutional layer to account 
for the flow of water from adjacent reservoirs. Within each BLSTM, x represents the step from the forecast date (x0). For example, x1 is the first step (Day 1), x15 is the 15th step (Day 
15), and so on. precip. = precipitation; temp. = temperature.

Source: Authors, based on Kruitwagen et al. 2022b. 
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Uncertainty 
Uncertainty is a critical tool for understanding model perfor-
mance. It helps us understand the level of confidence we can 
have in a given prediction. However, with neural networks 
such as an LSTM, quantifying uncertainty is a challenge due 
to the black-box nature of the models; there are too many 
possible configurations of weights to consider (Blundell et al. 
2015). Therefore, we followed Blundell et al. (2015)’s Bayes by 
Backprop method to quantify uncertainty and reduce error. 
In short, each weight within our model was normalized to 
its mean and standard deviation. We then applied two terms 
within the optimization step to minimize loss in our weights: 
mean squared error (MSE), which measures likelihood loss; 
and Kullback-Leibler (KL) divergence, which measures 
complexity loss. MSE quantifies the magnitude of errors 
made by the model by measuring the difference between the 
model’s predicted versus actual values. A larger MSE means 
the prediction is far from the actual value. KL divergence, 
then, measures the difference between the predicted distribu-
tion and the target distribution. We found that our best results 
came when heavily weighting the likelihood loss term and 
relaxing the assumptions around the complexity term. 

Training
The full pool of data spanned 11 years, from 2010 through 
2021. We segmented the data by year into three pools: train, 
validate, and test. Data reserved for training were used to 
create the model architecture and weights; the validation 
years were used to create hyperparameters for the model; the 
test data were withheld from the model creation process and 
used only to compare the model predictions to the actual 
results at the end. 

Our model was trained on seven years of data (highlighted 
in dark blue in Figure 5), meaning we have around 2,500 
data points per reservoir to fit to the model (though some 
reservoirs have less data availability). We validate and test on 
two years (730 days) of data (each) (medium blue and light 
blue in Figure 5, respectively). By having at least a decade of 
data, we can train the model on multiple dry episodes and test 
its ability to predict those events. In fact, this is why we did 
not reserve the final four years for validation and testing, as is 
typical to avoid look-ahead biases; we wanted to test perfor-
mance in years with different climatic conditions.  

3 RESULTS
Given that the forecast results are made available as water 
volumes rather than net changes in volume (i.e., the model’s 
native output), we evaluate performance in terms of volume. 
Volume is a more actionable metric for our stakeholders, 
who need to understand the change relative to the cur-
rent water supply. Results can be found in Table 3 and seen 
spatially in Figure 6.

Overall, performance varies based on the prediction horizon 
(i.e., how far out the estimate is from the date of prediction), 
the reservoir, and the season. The short-term forecast from 
Stage 2 (coming 14 days) had the least amount of variation. 
All pilot reservoirs had a strong short-term forecast, averaging 
a coefficient of determination (R2) of 92 percent. The R2 value 
measures the goodness of fit from a scale of 0 to 1. The closer 
to 1, the closer the forecast is to the actual results. One reason 
the short-term forecast performs well is because it includes 
the ex ante forecasts for precipitation and temperature. 

Figure 5  |  Years used to train, validate, and test the model  

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Train

Validate

Test

Note: The year 2017 was excluded from the dataset due to corrupted data from TIGGE (THORPEX Interactive Grand Global Ensemble). 

Source: Authors.



10  |  

  

Table 3  |  Coefficient of determination of predicted water volume for test data  

BASIN PILOT RESERVOIR FULL STORAGE (MCM)

PREDICTION HORIZON

STAGE 2 (DAYS 1–14) STAGE 3 (DAYS 15–90) OVERALL (DAYS 1–90)

Ganges Rihand 10,600 0.99 0.88 0.90

Ganga Damodar Maithon 1,094 0.93 0.67 0.72

Panchet 1,497 0.85 0.00 0.15

Tenughat 1,021 0.76 0.54 0.58

Tilaiya 395 0.96 0.60 0.70

Godavari Pench 1,241 0.97 0.65 0.70

Sriram Sagar 3,172 0.94 0.32 0.42

Kaveri Mettur 2,707 0.82 –0.06 0.08

Mahanadi Hirakud 5,896 0.97 0.88 0.89

Narmada Bargi 3,920 0.98 0.81 0.83

Indira Sagar 12,220 0.97 0.85 0.87

Average 0.92 0.56 0.62

Standard deviation 0.07 0.32 0.28

Note: The performance for each pilot reservoir is shown for three prediction horizons with the model structure: Stage 2 (forecast decoder), which predicted days 1–14; Stage 3 
(prediction decoder), which predicted days 15–90; and overall (combination of Stages 2 and 3). The R2 value was calculated by comparing the predicted water volumes to the 
actual values for the days within each prediction horizon from the Test subset. The table also includes the full (gross) storage volume in million cubic meters (MCM). 

Source: Authors.
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Figure 6  |   Overall coefficient of determination of predicted water volume for pilot reservoirs 

Notes: The mean overall performance for each pilot reservoir. Reservoirs are grouped into their basin networks. R2 = coefficient of determination.

Source: Data used: Reservoir locations (Lehner et al. 2011); HydroBASINS catchments (Lehner and Grill 2014).
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Looking at the longer-term forecast from Stage 3 (coming 
15–90 days), we see that the performance degrades, especially 
in the Ganga Damodar, Godavari, and Kaveri basins. This is 
not surprising given that day-of-year is the only input data 
available for this stage (aside from the hidden state). 

The performance among reservoirs may vary for a few reasons, 
such as size and location. Figure 7 highlights that reservoirs 
smaller than 4,000 billion cubic meters perform worse than 
the larger reservoirs, with an average R2 value of 48 percent 
versus 87 percent. Figure 7 shows that performance is also 
clustered by basin. For example, the reservoirs in the Ganga 
Damodar have some of the weakest prediction power. The 

Ganga Damodar reservoirs are operated as a network (Saha 
et al. 2017) to coordinate water releases together to manage 
floods and meet water demands for irrigation, water sup-
ply, and electrical power generation (Sen 2021). While is it 
common for reservoirs to be operated in a network, the close 
spatial proximity of these reservoirs may mean that water 
exchanges may happen more frequently and/or be felt more 
rapidly than farther-spaced reservoirs. In other words, human 
intervention may be a main driver of water volumes in these 
nested reservoirs, which is something our meteorological 
predictors cannot fully learn.
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Figure 7  |   Forecast performance organized by reservoir size and major basin  

Note: Colors correspond to basin groupings. R2 = coefficient of determination; MCM = million cubic meters.

Source: Authors.

14,00012,00010,0008,0006,0004,0002,0000
0.00

0.10

0.20

0.30

0.40

0.50

Co
rr

el
at

io
n 

of
 d

et
er

m
in

at
io

n 
(R

2)

Full storage (MCM)

0.60

0.70

0.80

0.90

1.00

Sriram Sagar

Mettur

Panchet

Tenughat

Bargi

Hirakud
Rihand

Indira Sagar

Tilaiya

Maithon

Pench

To understand the difference in performance further, it is 
useful to examine the volumes themselves. Figure 8A shows 
the 2020 volume data for the worst-performing reservoir, 
Mettur, which has a gross storage capacity of 2,700 million 
cubic meters (MCM). The time series is noisy—its daily 
volumes jump around—making it difficult to predict. This 
may reflect human intervention in its water management, such 
as transboundary water transfers from the upstream state of 

Karnataka (Ghosh and Bandyopadhyay 2009). Regardless, 
the impact is a lower-quality forecast—which can be seen in 
both the R2 value as well as the massive range of uncertainty 
shown in gray. Comparatively, Figure 8B shows the Rihand 
reservoir, with a gross capacity of just above 10,000 MCM, 
in the Ganges basin. This is larger than Mettur and has a 
smoother—more predictable—time series on average. It also 
has much less uncertainty surrounding its forecast.
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Figure 8A–B  |   Average water volumes in 2020 for low-performing and high-performing reservoirs  

Note: Water volumes for Mettur, with one of the lowest overall R2 values of 8 percent, compared with Rihand, with one of the highest at 90 percent. Mettur is about a quarter of the 
size of Rihand. The actual and predicted volumes represent the 2020 average for that day of year (a single day may be included in up to 90 forecasts). The ±95 percent confidence 
intervals of the forecast are shown in gray. The 10-year baseline represents the average actual value for that day of year using data from the 2010–2020 average. R2 = coefficient of 
determination.

Source: Authors.
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Seasonality is the final factor to consider. On average, about 
80 percent of India’s annual rainfall occurs during the mon-
soon season ( June-September) (Mishra 2020). We do not 
include monsoon-specific forecasts, which could help capture 
the varying timing and intensity of a particular year’s cycle, 
and, as a result, it is the second-worst-performing season with 
an R2 value of 37 percent. Ironically, the post-monsoon season, 
which typically has the most stagnate volumes, performs the 
worst. In fact, as Table 4 shows, three of the reservoirs had 
R2 values below –1, meaning a horizontal line would have 
matched the actual volumes better than our forecast. In fact, 
that is exactly the problem: Our model is unable to learn 
how to “store” water during the post-monsoon (see Figure 9), 

Table 4  |  Coefficient of determination by season 

BASIN PILOT RESERVOIR

SEASON

MONSOON 
(JUNE–SEPTEMBER)

POST-MONSOON 
(OCTOBER–DECEMBER)

WINTER 
(JANUARY–FEBRUARY)

SUMMER 
(MARCH–MAY)

Ganges Rihand 0.78 –0.41 0.91 0.85

Ganga Damodar Maithon 0.29 < –1* 0.88 0.79

Panchet –0.36 < –1* < –1* 0.24

Tenughat –0.05 –0.17 0.95 0.76

Tilaiya 0.83 –0.22 < –1* –0.9

Godavari Pench 0.67 –0.67 0.59 0.32

Sriram Sagar 0.1 < –1* 0.48 < –1*

Kaveri Mettur –0.6 0 0.16 0.3

Mahanadi Hirakud 0.83 –0.32 0.61 0.81

Narmada Bargi 0.75 0.37 0.74 0.66

Indira Sagar 0.83 0.53 0.66 0.82

Seasonal average 0.37 –0.11 0.66 0.47

Minimum –0.6 –0.67 0.16 –0.9

Maximum 0.83 0.53 0.95 0.85

Note: The seasonal results are based on the valid date.a A < –1* value means a horizontal line would have matched the actual volumes better. These reservoirs were dropped from 
the seasonal statistics at the bottom of the table. 

a. Within our 90-day forecast, the valid date refers to the date of a forecasted value, not the date the forecast was made. For example, if a forecast was made on January 1, the valid 
date of the first forecasted day (i.e., first step) would be January 2; the valid date for the second step would be January 3, and so on.

Source: Authors.

and is heavily penalized by the R2 value as a result. Winter is 
the best-performing season (average R2 value of 66 percent), 
with many reservoirs experiencing steady drawdowns to 
meet supply due to the lack of precipitation. That said, some 
reservoirs like Panchet and Tilaiya still store water without 
many releases; in those cases, the winter forecast fails. The 
model performs comparatively well during the summer 
season (average R2 value of 47 percent), which is surprising 
given the number of operational decisions that must happen 
during this time of the year. As water planners wait for the 
monsoon, they must ration what’s left in the reservoir, while 
making sure there is enough room to store the upcoming 
monsoon’s rainfall.
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Figure 9  |   Seasonal forecasts for Rihand and Panchet  

Note: BCM = billion cubic meters.

Source: Authors.
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4 DATA SERVICES
4.1 Automated results
To make our baseline model actionable, its results need to 
be openly accessible and timely. Therefore, we have created a 
near-real-time computer system that automatically acquires 
new data, runs the model, and serves the results via an API so 
that the forecast can be easily integrated into existing dash-
boards. This data service is illustrated in Figure 10. 

Essentially, the data service runs using cloud infrastructure. 
It searches for and downloads new versions of the input data 
(Table 2) as they become available (usually once every five to 

seven days, when the new reservoir data are published). It then 
ingests, reduces, and normalizes the data according to our data 
processing methodology. The models are run for each reservoir 
to produce the forecasted change in water availability, which 
is then transformed back to water volume and stored. The 
data storage is served via an API—called the H2Ox API. This 
includes the 90-day forecast and the historic time series of 
water volumes, precipitation, and temperature. 

Using this data service, we make our forecast available for 
viewing on the Water4Power dashboard, found on the 
Vasudha Power Info Hub. See Appendix A to learn more. 

Figure 10  |   Data service schematic   

Note: Our system is deployed on the Google Cloud Platform. UI = user interface; API = application programming interface; met. = meteorological; precip. = precipitation;  
ECMWF = European Centre for Medium-Range Weather Forecasts; ERA5-Land = ECMWF ReAnalysis Version 5 Land; TIGGE = THORPEX Interactive Grand Global Ensemble; 
CHIRPS = Climate Hazards Group InfraRed Precipitation with Station data. 

Source: Kruitwagen et al. 2022a.
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4.2 Customizable model
While our data service provides an open-source forecast for 
all to use, we acknowledge that others may find it useful to 
expand or customize our underlying model. Therefore, to 
make our process entirely open source and transparent, we 
have turned it into a data science package on GitHub: https://
github.com/H2Oxford (Kruitwagen et al. 2022a). We not only 
share our project code in this repository, but provide a way 
for users to replicate and even experiment with our method 
in Python. For example, we give instructions on how the user 
can easily edit the configuration file to train a model for just 
one reservoir, or to remove the graph convolutional layer. 
Stakeholders may also use this service to train models outside 
of our extent, add new data like relative humidity and sedi-
mentation rates, or even insert new data sources such as local 
weather records. 

5 LIMITATIONS
The most obvious limitation to our model is our inability to 
incorporate reservoir management decisions as an input, such 
as operating limit, interstate water transfers, recent damming 
projects, sedimentation rates, dredging, or authorized changes 
to water release practices. While we attempt to capture 
interbasin dynamics with our adjacency matrix, our model in 
unable to predict sharp changes in water levels due to human 
interventions. Therefore, our forecast should be used to flag 
when drought-like conditions threaten water supply; it should 
not be used to monitor human interventions, or as a tool to 
inform reservoir management operations. 

Our pursuit of near-real-time production has limited the 
types of data evaluated in the model. Globally available Earth 
observation data were best suited for our data service infra-
structure, which requires that data be delivered in a consistent, 
timely, and efficient format via an API. For example, we 
were able to process four datasets—historic and forecasted 
precipitation and historic and forecasted temperature—from 
one data format delivered by ECMWF. Global data also offer 
more flexibility for scaling the tool in the future. There may be 
other sources—such as local weather gauge data—that could 
produce a higher-quality forecast and improve local accep-
tance of the results but were less-suited for near-real-time 
infrastructure. 

We are also limited by the length of our training data, which 
start in 2010 (when many of the CWC water-level time series 
start). One goal of our model is to forecast drought conditions 
that threaten energy production. While there were noticeable 
droughts that took place within our time range, such as the 
drought conditions in southern India over 2016–18 (Mishra 
et al. 2021b), ideally we could have trained our model on 
the most significant droughts over the last century to better 
capture extreme lows.

Finally, the timeline of this research prevented us from 
exhausting additional machine learning experiments. For 
example, we did not examine how selecting different years for 
our validation and test subsets impacted our results. 

6 NEXT STEPS
Though this paper focused only on the Water4Power pilot 
study, our data service is producing forecasts of water volumes 
for 66 reservoirs in India (see Kruitwagen et al. 2022b). We 
hope to work with other stakeholders, such as city officials, to 
implement similar dashboards on their websites. These expan-
sions need not be limited to the power sector: Our data can 
deliver insights into a variety of other sectors, including urban 
water supply, food security and agriculture, and long-term 
resilience building through risk reduction. To the best of our 
knowledge through conversations with our expert technical 
advisory group panel, there are no other comparable forecasts 
being used by the government, despite the need for actionable 
water information.  

We also believe this methodology has the potential to be 
scaled into a global product, given we identify a suitable global 
reservoir dataset, likely in the form of a satellite-derived 
product (the only data in our catalog that are not global 
come from our current reservoir water–level dataset from 
the CWC). New datasets, such as the reservoir surface water 
extents from Global Water Watch, could be used in lieu of the 
CWC reservoir data to scale our forecasts to anywhere in the 
world (Deltares et al. 2022). Such a dataset could be used to 
provide early warnings for disaster risk reduction, to prioritize 
nature-based solutions around reservoirs, or even by cities to 
inform resilience and adaption policies, among other ideas.  
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APPENDIX A. WATER4POWER DASHBOARD

The mission of the Water4Power beta dashboard (https://
vasudhapower.in/analytics/generation/water) is to alert 
stakeholders of potential water shortages that threaten power 
production, and to advocate for more water-prudent renewable 
power production to prevent future water scarcity–driven electricity 
outages. The current design of the dashboard was borne out of a 
yearlong engagement with a technical advisory group (TAG). The 
TAG—a group of external academics, practitioners, and public 
servants who are experts in the fields of water and energy—was 
asked to review and provide feedback on our process from both 
technical and user perspectives (see Appendix C for more details). 
The beta dashboard is hosted on the Vasudha Power Portal.

The data featured on the dashboard (summarized in Table A1) are 
organized into four main sections: discovery map, reservoir time 
series, water volume, and the water-energy nexus.

Discovery map
The user can view the pilot reservoirs on an interactive map. They 
can explore the hydrologic connections of these reservoirs and 
understand their water stress conditions. Here, the user must select 
a reservoir of interest to trigger the rest of the dashboard. Once a 
reservoir is selected, the map will classify the current volume using 
a traffic light alert.

Reservoir time series and forecast
First, the user can see an extended time series of the reservoir’s 
volume. This graphic shows the past year of reservoir volumes 
followed by the 90-day forecast. It also shows the past year of 
precipitation and the dead zone line for additional analysis. 

Precipitation time series 
The user can view the Annual Cumulative Precipitation graphic 
(accumulation restarts January 1 of every year). They can compare 
the current precipitation conditions to a 10-year average baseline, 
which has been calculated by averaging daily precipitation from 
2010 to 2020 to see if there has been a recent meteorological 
drought affecting the reservoir.

Water volume
Next, the user can view how full the reservoir currently is in 
the Bathtub graphic. They can compare the current storage—
expressed as current volume relative to full (gross) volume—against 
a 10-year average baseline. The baseline represents the average 
daily volume from 2010 to 2020 relative to the full volume. In 
addition, the user can compare the current storage to the dead 
storage—the volume in which no more water can be released from 
the reservoir. 

Power plant water use
The final section focuses on the water-energy nexus. We estimate 
the approximate water required to meet the generation in every 
thermal power plant dependent on the reservoir. For each plant, 
we list the generation (in million units, MU) and the water efficiency 
rate (volume of water in cubic meters to produce one megawatt-
hour of energy). These two values are multiplied (after the units 
are converted) to produce the approximate water used in million 
cubic meters (MCM). Cumulative power generation as collated by 
Vasudha Power Info Hub is used here, thus water use is estimated 
in a cumulative manner for the calendar year. 
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APPENDIX B. DASHBOARD SOURCES

Table B1  |  Dashboard data providers  

DATA POINT RESERVOIRS PROVIDER OR SOURCE

Baseline water stress All WRI Aqueduct (Hofste et al. 2019b)

Historic, current, and baseline accumulated precipitation All H2Ox API

Historic, current, and baseline reservoir volume All H2Ox API

Reservoir volume forecast All H2Ox API

Daily power outages related to water shortages All Vasudha API

Dependent power plant All Vasudha API

Potential generation (MU) All Vasudha API

Compliance status All CSE (Yadav and Arora 2021)

OTC-CT All CSE (Yadav and Arora 2021)

Capacity in MW All CSE (Yadav and Arora 2021)

Water efficiency (MCM/MW) All CSE (Yadav and Arora 2021)

Gross storage volume, dead zone volume Bargi CWC n.d.

Hirakud DOWR Odisha n.d.

Indira Sagar CWC n.d.

Maithon CWC n.d.; DVC n.d.

Mettur CWC n.d.

Panchet CWC n.d.; DVC n.d.

Pench CWC n.d.

Rihand UPJVN n.d.

Sriram Sagar CWC n.d.

Tenughat CWC n.d.

Tilaiya CWC n.d.; DVC n.d.

Note: API = application programming interface; MU = million units; CSE = Centre for Science and Environment; OTC-CT = once-through cooling versus cooling tower;  
MCM = million cubic meters; MW = megawatt; CWC = India’s Central Water Commission; H2Ox = winning hackathon team. 

Source: Authors.
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ABBREVIATIONS
API  application programming interface

BCM  billion cubic meters 

BLSTM  Bayesian long short-term memory model

CHIRPS   Climate Hazards Group InfraRed Precipitation 
with Station data

CWC  Central Water Commission, Government of India

ECMWF   European Centre for Medium-Range 
Weather Forecasts

ERA5-Land ECMWF Re-Analysis Version 5 Land

H2Ox  Name of the winning hackathon team

KL  Kullback-Leibler divergence term

LSTM  long short-term memory model

MCM  million cubic meters

MSE  mean squared error

MW  megawatt

R2  coefficient of determination

seq2seq(2seq) sequence-to-sequence(-to-sequence) model

TAG  technical advisory group

TIGGE  THORPEX Interactive Grand Global Ensemble

APPENDIX C. TECHNICAL ADVISORY GROUP

A technical advisory group—made of up external academics, 
practitioners, and public servants who are experts in the fields of 
water and energy—was convened to guide the research process 
and ensure our work had real-world application. The TAG met 
twice to review the research and data and provide guidance on 
next steps. Membership included the following individuals:

 ▪ Mr. Shashi Shekhar, Former Secretary, Ministry of Water 
Resources, Government of India 

 ▪ Mr. Srinivas Krishnaswamy, CEO, Vasudha Foundation 

 ▪ Mr. Ashish Fernandes, CEO, Climate Risk Horizons 

 ▪ Dr. Casey Brown, Professor, University of 
Massachusetts Amherst 

 ▪ Mr. Shripad Dharmadhikary, Policy Researcher, 
Manthan Adhyayan

 ▪ Dr. Sukanya Randhawa, Auroville Consulting 
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ENDNOTES
1. Three percent is based on 23.8 billion cubic meters per year 

(BCM/year) in withdrawals in 2019 for coal power production 
(de Oliveira Bredariol et al. 2021) compared with 761 BCM/year 
in total withdrawals for India (FAO 2020).

2. Twenty percent is based on an estimated 40,520 megawatts 
(MW) of installed capacity for all power plants that source 
water from the 11 pilot reservoirs. The list of reservoirs as well 
as installed capacity came from Vasudha’s online portal. This 
value was compared to the Central Electricity Authority’s total 
installed capacity from coal found in Figure 1.

3. We only included adjacent reservoirs that were actively moni-
tored by CWC in 2020.

4. Near-real-time access is coming with the release of ERA5-
LandT (ECMWF 2020).

5. The reservoir adjacency matrix defined the connections among 
basin reservoirs: downstream and diagonal connections were 
assigned a positive value, and upstream a negative.

6. The graph convolutional layer was composed of three headers:  
two linear layers, each with bias and dropout, and graph convo-
lution layer in the middle. Each reservoir was assigned its own 
header. The forecast and the predictor stages used the same 
headers so that data could be traversed between the two.
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